搜索:过拟合

梯度下降法处理正则化后的逻辑回归,解决拟合

原创 2018-04-08 01:00 阅读(134)次
逻辑回归的代价函数是 这个可以看  分类之逻辑回归的代价函数costfunction 过拟合问题和正则化可以看这里       欠拟合,过拟合问题     正则化-解决过拟合 正则化后就是加入了惩罚项:  带入梯度下降法     得到 这和线性回归部分看似相同,但记得h(θ)是sigmoid函数,而线性回归h(θ)是线性方程。 会发现,其实是在θj的部分,多乘上一个 ,而由于α , λ , m 皆为正数,所以实际上每进行一个梯度下降的循环,θj都缩小一些。而后面...

正规方程法处理正则化后的线性回归,解决拟合

原创 2018-04-08 00:00 阅读(335)次
没有正则化的线性回归正规方程法可以看这边 : 线性回归之正规方程法求解 正规方程法是通过 这个推导出的,现在  带入求导可推出(推导过程略,都是数学的东西) andrew ng在他的视频中推导出了结果: 跟未正则化的正规方程法相比,增加了λ 和一个 (n+1)* (n+1)的矩阵的相乘,n是样本的特征项数。 这个矩阵和单元矩阵略有不同,差别是第1行第1列的位置为0而不是1。 本文完。 本站作品的版权皆为作品作者所有。本站文字和内容为本站编辑或翻译,部分内容属本站原创,所以转载前务必通知本站并以超链接形式注明内容来自本站,否则以免带来不必要的麻烦。本站内容欢迎分...

梯度下降处理正则化后的线性回归,解决拟合

原创 2018-04-07 23:12 阅读(220)次
过拟合问题 和正则化 在   欠拟合,过拟合问题  和 正则化-解决过拟合  中解释过。 现在我们要把正则化应用到线性回归算法中来解决可能出现的过拟合问题。 就是把           带入到梯度下降   更正: 在这里的J(θ0,θ1)  应该是 J(θ) 中 得到 可以看出来,θ0的梯度下降是跟之前未加入正则化的时候一样的。这也符合了我们正则化-解决过拟合  提到的,惩罚项不包过θ0的说法。 j 输入1到n的部分,可以将θj提取出来得到...

正则化-解决拟合

原创 2018-04-07 16:20 阅读(133)次
过拟合的问题我已经介绍过了: 过拟合 我们知道过拟合的表征就是预测函数有太多高阶项比如3次方,4次方,或者更高。那我们可以通过降低或者去除这些项来解决过拟合问题,正则化的本质是为了简化预测函数的模型,使函数曲线更平滑,而减少这些高次项带来的过拟合。 由于h(x)是一个以x为自变量的函数,我们无法控制输入的数据x,所以简化函数的手段就是去减少或者去除某些参数θk。 去除高次项需要一些正确人工判断,人工就存在主观,可能带来错误,把一些对正确预测结果有帮助的特征项(但可能帮助很小,但却被扩大而造成过拟合)去掉。此时减少这些被扩大的影响比去除掉此特征项更合适。 在做预测函数h(x)求参数θ解...

拟合拟合问题

原创 2018-04-03 15:56 阅读(127)次
所谓欠拟合就是预测函数h_θ(x)的cost function(loss function)过大,没有和训练样本较好的拟合在一起,本质上是机器学习还没有学习到训练数据的特征中隐含的关系。往往初期的预测函数都是欠拟合的。随着减少cost function的,h_θ(x)会逐渐拟合训练数据。通俗的说就是预测函数还很不准确(不可用)的阶段。经过梯度下降等算法计算后依然欠拟合的话,可能的原因是特征维度过少,导致拟合的函数无法满足训练集,误差较大(high bias)。解决方法: 1. 添加其他特征项,有时候我们模型出现欠拟合的时候是因为特征项不够导致的,可以添加其他特征项来很好地解决。例如,...